
NEW Falling Ball Viscometer

...Newtonian measurements made simple and easy!

The Brookfield Falling Ball Viscometer uses the simple — but precise — Höppler principle to measure the viscosity of Newtonian liquid by measuring the time required for a ball to fall under gravity through a sample-filled tube.

Model KF20 (shown)
variable angle allows for greater viscosity range

Model KF10 (also available) fixed angle complies with DIN 53015

Connection to circulating bath for temperature control of sample

Set of six balls to test a wide variety of samples

Accuracy: 0.5% to 2.0% (depending on ball used)

Temperature Probe

Viscosity Range: 0.5 to 70,000 mPa•s (cP)

BROOKFIELD **V**ISCOMETERS

NOW CELEBRATING 75 YEARS!

What's Included?

Instrument Set of six (6) balls Temperature Probe Carrying Case

Optional Accessories

Circulating Temperature Bath
Viscosity Standard Fluids for Calibration
Special Temperature Probes

Applications

Beverages

Coatings

Cosmetics

Detergents

Food

Paint

Petroleum Products

Pharmaceuticals

Polymers

Soap

Use with a Brookfield Circulating Bath permits rapid temperature control of sample for more accurate and repeatable results.

How It Works:

The Falling Ball Viscometer is based on the measuring principle by Höppler for simple but precise dynamic viscosity measurement of transparent Newtonian fluids. The basic concept is to measure the elapsed time required for the ball to fall under gravity through a sample-filled tube inclined at an angle*. The tube is mounted on a pivot bearing which quickly allows rotation of the tube 180 degrees, thereby allowing a repeat test to run immediately. Three measurements are taken and the average time it takes for the ball to fall is the result. A conversion formula turns the time reading into a final viscosity value.

The Falling Ball Viscometer is used for quality control in various industries as well as in academic institutions to illustrate scientific method. The ease of use and straightforward method for recording time measuresments ensures meaningful test results.

 $^*\mathrm{Model}$ KF10 has a fixed angle of 80 degrees; Model KF20 can be angled at 50, 60, 70 and 80 degrees.

Ball Set with Case

The Falling Ball Viscometer comes complete with a set of six (6) balls. See Specifications for material construction.

SPECIFICATIONS

Viscosity Range:	0.5 mPa•s (cP) to 70,000 mPa•s (cP)	
Accuracy:	0.5% - 2.0% depending on choice of ball	
Ball set Material o	f Construction	ո։
	Balls 1 and 2:	Boron Silicate Glass
	Balls 3 and 4:	Nickel-iron
	Balls 5 and 6:	Steel
Ball Diameter: 11.0 mm to 15.81 mm		
Fall Time of Ball in	Measuremen	t: 30 to 300 seconds**
Length of Measure	ement Zone ir	the Tube: 100 mm
Operating Temper	rature Range:	-60°C to +150°C
Sample Tube Volu	me: 40mL	
Viscometer Dimer	sions: 180 x	220 x 330 mm
		ement of liquids above 70,000 mPa·s (cP)

11 Commerce Boulevard Middleboro, MA 02346-1031 USA T: 800.628.8139 or 508.946.6200 F: 508.946.6262 W: www.brookfieldengineering.com